Local Spectral Equidistribution for Siegel Modular Forms and Applications

نویسندگان

  • EMMANUEL KOWALSKI
  • JACOB TSIMERMAN
چکیده

We study the distribution, in the space of Satake parameters, of local components of Siegel cusp forms of genus 2 and growing weight k, subject to a specific weighting which allows us to apply results concerning Bessel models and a variant of Petersson’s formula. We obtain for this family a quantitative local equidistribution result, and derive a number of consequences. In particular, we show that the computation of the density of low-lying zeros of the spinor Lfunctions (for restricted test functions) gives global evidence for a well-known conjecture of Böcherer concerning the arithmetic nature of Fourier coefficients of Siegel cusp forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Families of Cusp Forms

1. Families of cusp forms and the local equidistribution problem 2 2. Families of L-functions 6 3. Analogy with sieve 8 4. Examples of local equidistribution 8 5. Families of cusp forms according to Sarnak’s letter 11 6. Families of L-functions according to Conrey, Farmer, Keating, Rubinstein and Snaith 13 7. Direct consequences of strong local equidistribution 14 8. Quantitative local equidist...

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

Siegel Modular Forms

These are the lecture notes of the lectures on Siegel modular forms at the Nordfjordeid Summer School on Modular Forms and their Applications. We give a survey of Siegel modular forms and explain the joint work with Carel Faber on vector-valued Siegel modular forms of genus 2 and present evidence for a conjecture of Harder on congruences between Siegel modular forms of genus 1 and 2.

متن کامل

Galois Representations for Holomorphic Siegel Modular Forms

We prove local global compatibility (up to a quadratic twist) of Galois representations associated to holomorphic Hilbert-Siegel modular forms in many cases (induced from Borel or Klingen parabolic). For Siegel modular forms, when the local representation is an irreducible principal series we get local global compatibility without a twist. We achieve this by proving a version of rigidity (stron...

متن کامل

Hyperbolic Distribution Problems on Siegel 3-folds and Hilbert Modular Varieties

We generalize to Hilbert modular varieties of arbitrary dimension the work of W. Duke [14] on the equidistribution of Heegner points and of primitive positively oriented closed geodesics in the Poincaré upper half plane, subject to certain subconvexity results. We also prove vanishing results for limits of cuspidal Weyl sums associated with analogous problems for the Siegel upper half space of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011